Nuclear Retention of Unspliced mRNAs in Yeast Is Mediated by Perinuclear Mlp1

نویسندگان

  • Vincent Galy
  • Olivier Gadal
  • Micheline Fromont-Racine
  • Alper Romano
  • Alain Jacquier
  • Ulf Nehrbass
چکیده

The molecular mechanism underlying the retention of intron-containing mRNAs in the nucleus is not understood. Here, we show that retention of intron-containing mRNAs in yeast is mediated by perinuclearly located Mlp1. Deletion of MLP1 impairs retention while having no effect on mRNA splicing. The Mlp1-dependent leakage of intron-containing RNAs is increased in presence of ts-prp18 delta, a splicing mutant. When overall pre-mRNA levels are increased by deletion of RRP6, a nuclear exosome component, MLP1 deletion augments leakage of only the intron-containing portion of mRNAs. Our data suggest, moreover, that Mlp1-dependent retention is mediated via the 5' splice site. Intriguingly, we found Mlp-proteins to be present only on sections of the NE adjacent to chromatin. We propose that at this confined site the perinuclear Mlp1 implements a quality control step prior to export, physically retaining faulty pre-mRNAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance

The nuclear pore complex (NPC) is both the major conduit for nucleocytoplasmic trafficking and a platform for organizing macromolecules at the nuclear envelope. We report that yeast Esc1, a non-NPC nuclear envelope protein, is required both for proper assembly of the nuclear basket, a structure extending into the nucleus from the NPC, and for normal NPC localization of the Ulp1 SUMO protease. I...

متن کامل

Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper mRNPs

A novel pre-mRNP retention factor at NPC Abstract Using a genetic screen, we have identified a previously uncharacterized S. cerevisiae ORF (renamed PML39) that displays a specific interaction with nucleoporins of the Nup84 complex. Localization of a Pml39-GFP fusion and two-hybrid studies revealed that Pml39 is mainly docked to a subset of nuclear pore complexes opposite to the nucleolus throu...

متن کامل

A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention.

In the yeast Saccharomyces cerevisiae, Mer1p is expressed only during meiosis, and its expression is linked to the splicing of at least three mRNAs: MER2, MER3, and AMA1. Previous evidence suggests that Mer1p activates splicing by directly recruiting snRNPs or stabilizing intermediate splicing complexes formed on pre-mRNA that contains an intronic Mer1p enhancer element. However, some splicing ...

متن کامل

Sequential RNA degradation pathways provide a fail-safe mechanism to limit the accumulation of unspliced transcripts in Saccharomyces cerevisiae.

The nuclear exosome and the nonsense-mediated mRNA decay (NMD) pathways have been implicated in the degradation of distinct unspliced transcripts in Saccharomyces cerevisiae. In this study we show that these two systems can act sequentially on specific unspliced pre-mRNAs to limit their accumulation. Using steady-state and decay analyses, we show that while specific unspliced transcripts rely m...

متن کامل

Inhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast.

Nuclear retention of pre-mRNAs is tightly regulated by several security mechanisms that prevent pre-mRNA export into the cytoplasm. Recently, spliceostatin A, a methylated derivative of a potent antitumor microbial metabolite FR901464, was found to cause pre-mRNA accumulation and translation in mammalian cells. Here we report that spliceostatin A also inhibits splicing and nuclear retention of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2004